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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 4347

A NONLINEAR THEORY FOR PREDICTING THE EFFECTS OF UNSTEADY
LAMINAR, TURBULENT, OR TRANSITTIONAL BOUNDARY LAYERS ON
THE ATTENUATION OF SHOCK WAVES IN A SHOCK TUBE
WITH EXPERIMENTAL COMPARISON

By Robert L. Trimpi and Nathaniel B. Cochen
SUMMARY

The linearized attenuation theory of NACA Technical Note 3375 is
modified in the following manner: (a) an unsteady compressible local
skin-friction coefficient is employed rather than the equivalent steady-
flow incompressible coefficient; (b) a nonlinear approach is used to
permit application of the theory to large attenuations; and (c¢) transi-
tion effects are considered. Curves are presented for predicting atten-
uation for shock pressure ratios up to 20 and a range of shock-tube
Reynolds numbers. Comparison of theory and experimental data for shock-
wave strengths between 1.5 and 10 over a wide range of Reynolds numbers
shows good agreement with the nonlinear theory evaluated for a transi-
tion Reynolds number of 2.5 X 106.

INTRODUCTION

The increasingly widespread use of the shock tube as an aerodynamic
testing facility has led to the closer investigatlion of the flows present
in such tubes. In particular, since the deviation of these flows from
those predicted by perfect fluid theory is often of large magnitude,
these deviations have been investigated fairly thoroughly. Several such
studies, either of an experimental or theoretical nature, may be found
in references 1 to 11l. Investigations of the boundary layers in shock
tubes have been made in some of the aforementioned references as well
as in references 12 to 17. This list of references does not cover the
complete field of literature existing on these topics but is representa-
tive of the various general treatments.

Consideration of the entire flow field from the leading edge of
the expansion wave to the shock wave is necessary to obtain an accurate
picture of the waves traveling along the shock tube. These waves are
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responsible for the deviations from perfect fluid flow in shock-wave
strength (attenuation) with distance, in pressure and density at a given
distance with time, and so forth, which have been noted by various
investigators. The analysis of reference 1 was the first to treat this
complete flow. Figure 1, a reproduction with minor changes of figure 1
of reference 1, is the basic wave diagram of the unperturbed shock-tube
flow showing the various flow regions to be considered with typical char-
acteristics and particle paths. This linearized analysis (ref. 1) was
based on an averaged one-dimensional nonsteady flow in which wall-shear
and heat-transfer effects generated pressure waves to perturb the" perfect
fluid flow. This averaging process essentially implied thick boundary
layers. The expansion wave was treated as a "negative shock" or zero-
thickness wave. The resulting perturbation equations then hinged on the
evaluation of the local skin-friction coefficient cg, which in refer-
ence 1 was assumed to be given by an equivalent incompressible steady flow.
Consequently, the application of the results of reference 1 was limited
to shock pressure ratios in which this assumption for c¢y was valid,

although the analysis was still applicable for other pressure ratios
when the proper choice of cy was employed. The assumption of incom-

pressibility should apparently eliminate the strong shock pressure ratios
from the range of validity.

Solutions to the laminar boundary-layer equations employing a linear
viscosity-temperature relation (refs. 2, 3, and 14) show thet the non-
steady cheracter of the flow i1s such that the equivalent laminar steady-
flow assumption is in error, irrespective of compressibility, for most
conditions except that existing in the cold-gas region a for strong shock
waves. On the other hand, the turbulent boundary leyer 1is not nearly so
sensitive to the unsteady character of the flow. Reference 15, which
assumed a one-seventh-power velocity profile similar to that of refer-
ence 1, reported that even for infinite shock pressure ratios the effect
of unsteadiness would produce only a maximum variation in turbulent skin
friction of 5 percent in the cold gas and of 22 percent in the hot gas.

The only other attenuation analysis to date that considers the entire
flow field is that of reference 2. This analysis is similar to that of
reference 1 in that it is a small-perturbation approach using traveling
waves and a negative shock, the major difference being that the pressure-
wave generations arise because the boundary-layer-displacement thickness
changes with time. (The boundary-layer-displacement thicknesses of
ref. 15 are used.) Flows with thin boundary layers having a linear
viscosity-temperature variation are required for this treatment to apply.
The attenuations predicted by references 1 and 2 for turbulent boundary
layers agreed within 10 percent for shock-pressure ratios up to 6 in
spite of the marked differences assumed in the mechanism for handling
the wall effects. The perturbations in the flow behind the shock show
a larger difference between the two approaches.
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The deviations from ideal theory discussed arise for the most part
from wall effects, that is, the perturbations in the shock-tube flow
caused by wall shear and heat transfer. Much recent work has been done
using the shock tube as a testing medium to provide very high-temperature
flows of short duration. (See, for example, refs. 9 and 18.) 1In these
cases, deviations from ideal fluid flow will also arise because the air
at high temperatures does not behave as an ideal fluid. It would be
difficult to separate the real-gas effects from the wall effects; there-
fore, the present analysis, like those of references 1 and 2, is con-
cerned only with the effects of wall boundary layer upon the inviscid
outer flow, the fluid being considered as an ideal gas.

The turbulent theory of reference 1 has been compared with experi-
mental data for attenuation in references 1, 7, 8, and 10 and good agree-
ment has been found in general. Predicted pressure perturbations in the
hot gas by the method of reference 1 agreed well with the experimental
results reported in the same paper. Fair to good agreement between
theory and experiment is reported in references 7 and 10 for the hot-
gas aversge density variation with time in the flow behind the shock
wave; poor agreement is reported for the cold-gas flow where the finite
expansion fan has been treated as a negative shock.

Since the deviations from the inviscid fluid flow often become
large in cases of aserodynamic shock-tube testing, the linear, or small-
perturbation, theories of references 1 and 2 are no longer applicable
and recourse must be made to some sort of nonlinear approach.

In order to obtain an exact theory for predicting the perturbations
in a shock-tube flow, & rigorous treatment would be required first to
the solution of the boundary-layer flows. The boundary-layer equations
would have to be solved not only in region B but also inside and after
the expansion fan which is considered to be of finite extent. For
laminar flows the main difficulty would probably be the correct handling
of the viscosity variation across the boundary layer. For turbulent flow
a rigorous treatment appears to be impossible without a tremendous
increase in knowledge of the mechanics of turbulence. Once the boundary-
layer solutions were determined, the vertical velocity at the edge of the
boundary layer could, if the boundary layers were thin, be used in the
manner of reference 2 to determine the local pressure waves generated.

The second major difficulty in obtaining & rigorous perturbation
solution would arise from the treatment of the entropy discontinuity.
The theoretical contact surface increases in extent with distance pro-
gressed down the shock tube due to mixing and diffusion (the former is
the major influence). This process not only generates pressure waves
but also alters the reflected and transmitted wave strengths of the pres-
sure waves generated by the boundary layers.
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If a rigorous solution such as that just described was available,
then it would without question be the one to be employed. The theory of
reference 1 and the thecry of the present report assume that the wall
effects can be averaged across the flow. This assumption introduces errors
because no such physical mechanism exists for the instantaneous trans-
mission of these effects across the flow. In the absence of the rigorous
solution there is no evidence to indicate that the errors introduced by
a shock-tube perturbation theory based on an averaging process are of a
larger magnitude than those introduced by the neglect of the aforementioned
considerations required for a rigorous solution. In addition, there is
the possibility that an averaging process might be more applicable as the
boundary layer fills a greater part of the shock-tube cross-sectional
area. Consequently, the extension of the method of reference 1 in the
present analysis is Jjustified.

In the present paper the analysis of reference 1 is first modified
to eliminate the restrictions imposed by the incompressible equivalent
steady-flow assumption for local skin friction; and then a nonlinear
theory is derived which permits application of the analysis to large
attenuations. It will be assumed that the reader is familiar with the
basic theory and assumptions of reference 1 so that repetition in this
paper may be avoided. This modified theory will be compared with experi-
mental data covering a wide range of flow variables. The theoretical
and experimental studies reported herein were conducted at the Gas
Dynamics Branch of the Langley Laboratory during 1955 and 1956.

SYMBOLS
a velocity of sound
3

Cf=‘:é;f cr(€)de

0]
Cn constant defined by equation (8)
Ce local skin-friction coefficient, 2TW/DU2
Cy coefficient of specific heat at constant

volume

cP coefficient of specific heat at constant

pressure
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D
U *
E=1+—" (% _
Uy - U\@
Fyms Txn 2 Exm» 8xn
2
—= ntl
F, = [p2t+t18 n+BC n+3
n n+39d n
Gy or Gp
én =Kgn
K

Imor T,nor T

1*

M =U/a
My = Ufag
MB = U/aB

Mg = Us/am

4 x Area

draulic di —
hydraulic diameter, Porimetes

functions defined by equation (39b)

constant defined by equation (36)

ratio of contributions of P waves to total
waves generated in region B,

oMs - Mg (P55
1+ MB - OMS PB

linear attenuation with first subscript
describing boundary layer appropriate to
region o and second subscript to region B;

b - P
that is, L7,T =2vs _ “Po for region a
Py
turbulent with n = 7 and region B as
transitional

fixed distance along shock-tube axis

distance the shock moves from a given point
until the effects of transition in the flow
generated at that point first influences
the shock
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NIn or T,n or T
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reciprocal of velocity exponent in boundary

Lort

o

arbitrarily denotes subdivisions I, II, III,
etc. of hot-gas region

layer,

jou] Jut

nonlinear attenuation with first subscript
describing boundary layer appropriate to
region o and second subscript to region B

Prandtl number

2c
characteristic parameter, —EX a U

effective characteristic wave parameter
defined by equations (43)

static pressure

gas constant; Reynolds number %%

*
Reynolds number of transition, H%_
entropy

temperature

wall temperature

adiabatic wall temperature

time

free-stream velocity

shock velocity

velocity of wave which generates flow

velocity in boundary layer

distance along shock tube from diaphragm
station
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o

distance from surface

function defined by equation (B12)

function defined in equations (31)

ratio of specific heats, cp/cv; assumed

as 1.40 for computations

length of segment into which shock tube is
divided for nonlinear treatment

characteristic derivative in boundary layer,

(), 18"

X% U 6 ot

characteristic derivative in boundary layer,
0 ,18°10()

o84 U 6 E ot

boundary-layer thickness; also indicates
differential quantity

boundary-layer displacement thickness,
[o¢]
- E)d
Y
Jo -3

characteristic derivative in potential flow,

o) 4 (u £ )l
ot x

contribution to attenuation due to P waves
in region B

recovery factor, assumed equal to 0.85 for
laminar flow and 0.90 for turbulent flow
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<] boundary-layer momentum thickness,
(o]
u( u
=(1 - —)dy
A
6o boundary-layer momentum thickness at ¢ = §O
E‘d * . * < .
K = E; for &7 > t3 and if €& < &3, its value is 1
M coefficient of viscosity
v coefficient of kinematic viscosity
3 distance flow has progressed along surface
Ea distance flow has progressed along surface
at entropy discontinuity
€ distance flow has progressed along surface
when 8 = 8,
g* distance flow has progressed along surface
at transition
P density
0’:8_00.
&g
Tw wall shearing stress
¢P,a’¢P,B’¢Q,B’¢s,a’¢s,B influence coefficients, defined in appendix A
¢§,¢a influence coefficients defined by
equation (Lk)
Oy Or On compressibility correction
w exponent in viscosity-temperature law,
po~ TO
I,I1I,ITII,etc. subdivisions of hot-gas region B for non-

linear treatment (see fig. 8)
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Subscripts:

Letter subscripts not included in the symbols defined above refer,
in general, to values at points or within regions shown in figure 1.
Numbered subscripts refer to points in figures 8 and 9. Exceptions to
be noted, however, are as follows:

m,n refers to velocity profile parameter m,n

o perfect-fluid value

t - at time ¢

Vs evaluated immediately behind shock, that is,
point v located at x = Ugt

X at distance x

T denotes attenuation with transition

X arbitrary condition in shock-tube free stream

std denotes NACA standard atmospheric conditions

A prime on a symbol indicates a quantity evaluated at reference
temperature.

THEORY

Derivation of Expressions For Local
Skin-Friction Coefficient
The skin-friction coefficient for the flow behind wave-induced flows
will be found by an integral method. An incompressible skin-friction

coefficient will first be determined and then a simple compressibility
correction will be applied.

The integrated equation of motion for the incompressible boundary
layer with zero pressure gradient is (see ref. 1k4):

0 1 65*) _Tw 1
(&), ) - &
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The form parameter &%/6 is assumed to be constant; this has been
shown to be true for the unsteady wave-induced laminar flow (see ref. 1h)
but has not been completely established for turbulent flows. Equation (1)
then becomes

J6 1 8%/d6 1
o6 1506} _1 2
<8x)t T e<at>x > °f (2)

Since the resulting expression for cs will ultimately be used in

the attenuation formulas wherein the integral \/pcf(g) dt¢ 1is desired,

the variable ¢ 1is introduced. The variable ¢ 1is defined as the dis-
tance a particle in the free stream has moved to reach the point (x,t)
since acceleration by the passing wave which originated at x = 0 at

t = 0 and which travels with velocity Uy. Thus,

E(x,t) = —2 (Ut - x) (3)
Uy - U

In the case of flow in a shock tube, the value of Uy 1is Ug for

the flows induced by shock waves. If the assumpticn of reference 1 is
followed and the expansion wave replaced by a wave of zero thickness,
moving with the speed of the leading edge. of the original expansion
wave, then Uy = -a..

The differential equation (2) is transformed from the x,t coor-
dinate system to the E,t system by using the following derivatives:

)
(&), - (&) (&) - - w2,

L
@ @3 &) 756, @)

/

(4)

Thus equation (2) becomes

\
90} , 18¥1f08) _ 1
(ag)t U E<at>§ 2E T )
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where

¥*
E=1+ b -l (6)
Uy - U\®
Now equations (2) and (5) are differential equations capable of
solution by application of the method of characteristics. The slopes
of the characteristics are

Ay _ 1 8%

Ax U ©
for equation (2) and

ot 1571

AE U6 E

for equation (5).

Thus, if the symbol Af/Ag is used to denote the derivative along
a characteristic of slope At/At, equation (5) may be written as

68 1
ZE = 5B ce (7)

For steady-flow boundary layers with zero pressure gradient, it has
been established that cg = cg(d,U,v). If this relation is assumed to

hold for unsteady flows in the same form as for steady flows, then

-2
cr = cn@ ™ (8)
v
For turbulent flows n 1is the reciprocal of the exponent in the
fractional power expression % = %)l " used to describe the turbulent

boundary-layer velocity profiles. For laminar flows the value of n 1is
one. The Cp terms are arbitrary constants to be evaluated later and
rmay be completely different for the steady and unsteady flows.
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Combining equations (8) and (7) and integrating yields:

-2
A0 1 (U 5) o+l T
—_— Cn

Ny = o5 i 0 (9)
2 2
g =
c n+l pE
f o™l pp = _n(l 9> f AE (10)
9 2E\U & Eo
n+l
n+3 i 1'1+5
_ o+l  n o+ 3 Cnfv 0 o+l
8 = 8¢ + nr I ﬁ(ﬁ g) (ﬁ - §o> (ll)

Substituting equation (11) into equation (8) to obtain cg as a func-
tion of & yields:

-2
Sol w Lo T
_[,mn+ 18] nt3in + 1 , ntl 2E (8 U U, _ -
e(t) ‘<2n+3Es) R P 6,;(5) <‘> Y
(12a) h
-2
5 nt+3 n+3
” 2 2
] n+52_+_1_2_E_§n+<_9> Uf .
eg(t) = FpE™2 |l cn<9> — + v(g go> (12p)

For the special case of 65 = O at & which corresponds to flow
initiation at ¢, there results

2

2
—= 3
cp(e) = FnEn+5[%<§ ) 50)] " (12¢)

The values of the various Fp terms, which are directly related to
the hitherto arbitrary Cp values, will now be determined to match known
solutions for certain limiting cases. If the ratio Uy/U becomes
infinitely large, the solution must be the same as that for an infinite

flat plate in contact with a fluid impulsively started from rest at time
t = 0.
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Under these conditions

-
E - o = Ut
5*
E =2
) \ (13)
2 -2
[\ U2t> o3
elt) Fn(?) 2

The solution, known as the Rayleigh solution, to such an impulsive laminar
flow over a plate is

1
2
2
ca(t) = 1.128(9-E>
f v \ (14)
(%f) - 2.469
/Rayleigh )

Consequently, in order to match the Rayleigh solution for the laminar
case (n = 1)

or
F; =0.718 (15)
On the other hand, if Uy/U becomes infinitely small, the solution

must be the same as that over a semi-infinite flat plate in steady flow
(that is, the so-called Blasius problem). For these conditions

E=1.0

_ n+3 6
cr(e) = Fn(? 5 v 50) ‘j =)
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whereas the corresponding form of the Blasius solution for laminar flow

is
cp = 0.661{%(5 - go)]

8 /Blasius

= 2.605

N
_L
2

(17)

J

Thus, if the Blasius solution were to be matched, it would be nec-

essary for

Fl = 0.66)-‘-

Two possible solutions are then available for the laminar
incompressible-flow case depending upon which limiting value is matched:

Rayleigh limit <§¥ —9«>:

Uy

(¢£)pan (€) = 0-TI8{1 + 1.469 T

\\
-0\

Blasius limit (%?

(cg)n=1(8) = 0.664{1 + 1.605 T

1
2 -1
(& - &) ° (18)
L _1
2 U 2
Uy - U> [?(g ) 50)] (180)

In figure 2 the values for cf\’%(F - 50) as determined by four

different means are plotted against pressure
air-air shock tube. The upper branch of the

behind the shock, and the lower branch applies to region a behind the zero-

thickness expansion wave associated with the

ratio across a shock in an
curves applies to region B

shock of strength pBo/pw'
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In addition to the values determined from equation (18), there are shown
values which would be obtained, if the fluid were assumed to be incom-
pressible, by the integral method of reference 14 and the numerical solu-
tion to the Prandtl boundary-layer equations. (The results of ref. 15
are applicable to this numerical solution.) The agreement between both
the curves of equation (18) and the referenced curves is very good. How-
ever, since the curve based on the Rayleigh limit gives a better approxi-
mation in region B, which will be shown to dominate the attenuation equa-
tions, the Rayleigh values of F) =0.718 and 5*/6 = 2.469 shall be
used for the remainder of this paper. Reference 17 also employed a nor-
malized Rayleigh velocity distribution in the treatment of flow induced
by shock waves.

For the turbulent case two analogous limiting processes are not
available in order to determine the values of Fp. The turbulent boundary-

layer theory is semiempirical and relies on experiments to supply con-
stants for the resulting equations. Since no "Rayleigh-type" experiments

have been performed, there i1s no limiting process 7; — o to apply for

the turbulent case. There 1s, however, the semi-infinite flat-plate

Uy

solution corresponding to the limit — — 0. This solution (see refs. 1
U

and 19) assumes a velocity profile

1/7
v . <%> / and results in a skin-
U

friction coefficient expressed as

cp(E) = 0.0581 M (19)

v

[
A8 o

The combination of equations (16) and (19) results in a value of
F7 = 0.0581.

u

1/n
For profiles of the family = = (%) it may be shown that
U

8 n )

5 (n+1)(n+ 2)

3% 1

5 b+ 1 > (20)
Ei _n+2

8 n J
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Therefore, the expression for the one-seventh-power turbulent veloc-
ity profile skin~friction coefficient in the nonsteady incompressible
flow becomes

1 1
> "5
_ 2 %W }u
cg(8) = 0.0581(1 + = Ty ;(g - go) (21)

Since there was only a minor difference between the unsteady-flow
values of cp for laminar flow when based on the limiting cases of

Y Y

T -0 and T — e, it is expected that the turbulent-flow agreement

would be just as favorable if results were available for %? - o. Con-

sequently, equation (21) is assumed to be a fairly close approximation
to the correct answer. Equation (65) of reference 15 is very similar
to equation (21) but was derived in a different way.

The skin-friction-coefficient relation of equation (19) corresponding
to the one-seventh-power profile law is no longer valid at arbitrary large
values of Reynolds number in incompressible steady flow. Instead a loga-
rithmic law is often used. (See ref. 19.) However, since a power profile
is easily handled by these methods, the skin friction on a semi-infinite
plate for these large Reynolds numbers is found to be closely approxi-
mated by the relation

L
ot - to)|
cp = 0.0186|]—~—— 2/ (22)
v
. . . . ) u 1/13
which is compatible with the relation G- (y/®) . If for consistency

it is further assumed that ©%/0 has the value 15/13 (the value for

n = 13), then the unsteady skin-friction coefficient would be given by
1 -1
) 8

2 Uy UQ - go)

13 UW -U v

cp(€) = 0.0186(1 + (23)

No claim is advanced that a 1/13-power profile actually exists at these
higher Reynolds numbers; it is only necessary for equation (22) to be
valid for steady flow and the value of 5%/8 to be 15/13.
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It was shown in reference 14 that the skin friction in region a is
correctly given by the method of characteristics using the boundary con-
dition 6 =0 for § =0 at x = -act (that is, on the zero-thickness

expansion wave) for that part of o where x < Ut6/8* and the boundary
condition 8 =0 for & =0 at x = Ugt (that is, on the shock wave)

for that part of o where Ut8/8* £ x S Ut. Sketch (a) shows a boundary-
layer momentum characteristic. In order to determine the unsteady fric-
tion coefficient at point ¢ in the region in question, Ute/ﬁ* S x < Ut,
the boundary condition of © = O on the shock wave (point a) is correct.
In the analysis which follows, the boundary condition © = O on the
expansion wave (point b) is used instead. Friction coefficients are
shown qualitatively in sketch (b). The solid curve represents the case
with the boundary condition on the shock whereas the dashed curve repre-
sents the case with the boundary condition on the expansion wave. In
the region in question it is seen that the differences are not serious.
Because of the relatively small contribution of region a to attenuation
as compared with the contribution of region B and also 1n the interest
of simplicity, this error is neglected.

Boundary-layer characteristic,
OAx U 0

U T o

N
\
.
~
—————— (1, — i B — 3
-ag 0 y b U Ug
6*
x__ _,
t
Sketch (a) Sketch (b)

In order to handle the transitional flows which occur behind the
waves in a shock tube, some approximation for cy in the transition

region must be employed. Any of a number of assumptions is possible in
this region. However, in view of the many assumptions already present
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in the theory, the least complicating supposition will be employed in

this case; namely, an instantaneous transition is assumed and the value

of cy in the turbulent region will be taken as the value which would

be present had turbulent flow existed since the initiation of flow. In
other words, at the transition point the local cy changes discontinuously

from the laminar to the turbulent value and the value &5 = O then applies

in both laminar and turbulent regions. This assumption was used in the
logarithmic transitional curve for steady flow of reference 19. Figure 3
compares the integrated skin-friction coefficients of reference 19 with
the curves obtained by the various power laws and the foregoing transi-
tional assumption. The agreement appears to be very good.

A simple compressibility correction will be based on the intermediate
temperature or T' semiempirical method. This correction, expounded in
reference 20 for laminar boundary layers and in reference 21 for turbulent
boundary layers, assumes that the incompressible skin-friction relations
apply to compressible flow if the properties of the compressible flow are
taken as some intermediate value between the wall and free-stream values.
Thus, if the relation

-2
n+3
cf = W Fn(g g) (24)
Lig VY
2
applies to a steady incompressible flow, then
-2
n+3
cp' = lTw = Fp l%- > (25)
§plu2 v

will apply to a steady compressible flow for a certain choice of the
primed state. The following values of the intermediate temperature T'
are given (see refs. 20 and 21):

_For laminar flow:

T
=1 + 0.0%2M2 + 0.58 ?" -1 (26a)
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For turbulent flow:

ETL =1 + 0.035M2 + o.hs(%" - 1> (26b)

It may be shown that for an arbitrary reference state, which may be
either wall or free stream, equation (25) may be put in the form

_ .2 nt+l 2
n+3 n+3/ \n+3
cp = lTw = Fn<g §> Q%;) (%r\ (27a)
ZoU° /
-2
nt3
ce = Fn<% e> % (27)

If a temperature-viscosity relation of the form

O]

is assumed to apply, then the steady-flow compressibility correction &
becomes

n+1-2w

o = (,}) 3 (28)

It is assumed that this T' method is also applicable as a compres-
sibility correction for the unsteady-flow skin-friction coefficients.
Compressibility corrections in hot and cold gas €y are plotted against
shock pressure ratio in figure 4 for an air-air shock tube. The value
w = 0.8 has been used to compute these curves. :

The results of this section may be summarized by the following
expressions for skin-friction coefficient:
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\
i L
Uy 2 U 2
(cf)rl:l = 0.718 1+ l.)+69 m <—; 3 Ql
1 L
> )
; 2_W Yu
(e£)n=7 = 0.0581(1 + T <v g) Q7 ’ (29)
L -1
8 8
, _ 2 Uy U
y,
where

n+l

PP

2

Evaluation of the Linearized Attenuation Expressions

The basic linearized attenuation expressions derived in reference 1

are summarized in appendix A.

The following expressiocns result from the

first identity and subsequent substitution and manipulation of the per-

tinent equations from the appendix:

Pys - Ppo  Pys - Pr Pr-Pc Pc-Fp Fp-Ppgo
= + + + (30)
ag ae ae 8e 8¢
2o
Pys - Ppo 1 fid_ oMg - Mg oMg - Mg Ppo - Pup  y -1  Bgo Pgo - Pao
ac D o ¢P:ﬁ g - Mg - 1 * ¢Q:B aMg - Mg + 1 Pgg + Qg + > 2 a ¢SIB Cf’a(g) e +

-

¢ 2po
lfd¢ Mg + 1 PB0+QBO_7—1 Bap
D Jo Pyo by +  + 1

P - P
Bo~ 90 g aler,ale) at

S

Bao

.

Pao *+ Qo b4 <aﬁo>2 ae
oy

(31a)
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Pys = Pgo 1 fgd 1 fgd
_vs ko _ 2 Tace g dE + = r ae 1b
o D Jo (BB > Jo e (31b)

Since

Pvs ~ Ppo _ 72 Pvs - Pgo (32)

Pgo 2 880 a¢

(see ref. 1) the following relation results

- -1 £ N3

Pyg pBo/7 8¢ 1 an B J[ d

VA = =T c dte + T c dg +
pBO \2 a0 D B,m 0 f,8,m B,n -“CEB* f,B,n

I’\K'E:(L* gd. .
Ta,m \/ cf,a,m 46 + T'g n k/p % Cfya,n 48
0 KEq
(33)
in which the subscript m applies in the laminar range O <t B < ga’B*

(1’)
and the subscript n applies in the turbulent range ga,B* < ga,ﬁ < &g
The value of & is defined as gd/g* for ¢g* > gd and as 1 for &* < gd.

The total linearized attenuation is thus made up of the sum of the
effects of regions o and B. This relation may be expressed mathematically

as
Pys ~ Ppo _ (va - PBO> N Pvs ~ Ppo (3k)
Pgo Pgo  /Ja Pgo /B
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where

Pys -~

b8

Now, with

or

\O/ \_o/
@ 3]
i ]
(108 o R

B.BO

&Bo

(o o

(o o

T o a -
a’)m 0 Cf)q’)m g + Pa’,n Kg * cf,a,n d

be
B,m 0

*

cy expressed in the form

Cf,n(g) = FnEnn+3

cr,n(€) = Gnﬂn(;

2

U

B

NACA TN L4347

integration of equations (35) results in the following equationms.
subscript X designates either region a or region B.)

)

04
(35a)
g4
¢f,B,m g + PB,nLEB* cf:B;n dé
(35b)
2 n+1-2w
(368)
-2
n+3
§> (36p)
(The
- .2_3 n+l E]:
. ﬁ: i Gn9n<%) n I:(§d>n+3 - g*)m{l
X
m+l - _;2_
3(&@) k3 .
2
(37)
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Rearrangement of terms of equation (37) produces
_2]” -2 oml owil _2(men)
Pys - Pgo 1 a,l\ D3 4 8 Ppo m+ 30 Ve m+3 tq m+3 e * m+3 fa 1 (m+3) (n+3)
( Par ‘mengﬁ 'E%SE'%M%m+l§7) 7, %f Voo *
.2 o ol
n+3 i Ve ™3 gd n+3 Kg* mt3
Tulnfn n+ l\am T> (\T> - ; (38)
X
-1
wl 2 ol 2(m-n) ol
[Pys - g \2+3(a D\ 13 AN\e+3 7,0\ /e D\ (mt3) (n+3) ¥ \m3
N [l R T S B I
where
’
_ 2
_ UX Ve m+5
& = Txolg, v
L (39p)
m-1
mt
. =L 8 Pgom+ 3 Ty Oy Eg 5
Xo 2 800 P, It 1 Xu 1
J

o0

The term &xm requires in addition

a temperature-viscosity relation which may be either an exponential type or
some other form, such as the Sutherland equation.

Note that fy, 1is a function only of the shock pressure ratio pBO/p
and the value of m for any region X.

For the case of no transition when the flow is either completely
laminar or completely turbulent, equation (39&) reduces to

1 2

Pyvs ~Ppo (1 w3 D) ©+3
e (G G) T e

oo
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or

ntl -2
Pyg - P n+3/a D\ B+3
Pvs " 2o _ (%) (f’) En e (40)

The attenuation in this case for a given initial value of PBO/PQ is

obviously dependent only on the two parameters expressed as hydraulic
diameters of shock-wave travel 1/D and shock-tube Reynolds number

a'ooD/vbO‘

For the case with transition three parameters are required to
describe the phenomenon at a given initial value of pBo P, the third

paremeter is the transition Reynolds number R* and enters into the
analysis in the following manner:

2= — = (b1)

When equation (41) is substituted into equation (39a), the linear
transitional attenuation relation becomes:

-1

otl N ol g . ea
va'PBo) 1P (aD) B3 o v 1 V3 pam3(1 aP) B3 3
( P X,m,n D) Voo Exna| g Voo b4 (=) D Ve () *
n+l n+l -E% ml
(B v I\PFD el aD) T =3
Bl [ (FZE;> (2 22) 7 () (42)
a..
where the term -2 X L

is a function of A . Thus, at a given
U Voo §d ° pBO/psa ’ g

value of Pao/Pm the linearized attenuation is a function only of 1/D,
awD/vm, and R¥.

The attenuation functions By’ the compressibility corrections

QXm and their products are presented in table I for shock pressure

ratios from 1.0 to 20.0 and for m equal to 1, 7, and 15. It may be
seen by inspection of equation (40) that, for given shock tube 1/D,
Reynolds number amD/vw, and no transition, the attenuation contribution
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of the region X is directly proportional to the product (Qg)xm. In order

to demonstrate graphically the behavior of these compressible attenuation
functions, they have been plotted in figures 5(a) and 5(b). The magni-
tude of the contribution of region B to attenuation increases monatomically
with increasing pressure ratio, is always negative in sign, and thus tends
to increase sttenuation. On the other hand, for low pressure ratios the
contribution of region a tends to increase attenuation; above a shock
pressure ratio of about 5.9, the trend is reversed and region o contri-
butes compression waves that tend to decrease attenuation. This reversal
is discussed more fully in reference 1.

When no transition is considered, the attenuation function for the
entire flow field is found by adding the contributions of regions a and B.
For the cases where the profile exponent m 1is the same in both regions,
the total compressible attenuation function has been computed and is
shown in table I and in figure 6 for values of m of 1, 7, and 13. This
function is given as

w1 2|
pVB -p 1 mt+? Voo m3
S <ﬁ> <ﬁ> = (9)o,m + (%)p,n

The results of using the methods of references 1 and 2 are also shownl
in figures 6(a) and 6(b) for values of m of 1 and T, respectively.

For the laminar case the curve in figure 6(a) representing the
method of reference 1 falls far below that of the present report, pri-
marily because of the importance of the neglected unsteadiness effects
as discussed in the introduction. The results of reference 2 are also
below that of the present report (approximately 25 percent for shock
pressure ratios from 4 to 10) and show better agreement at higher pres-
sure ratios (only 10 percent below for a shock pressure ratio of 20).

Agreement between the methods of references 1 and 2 and the present
method is better for the turbulent case (m = 7; fig. 6(b)). The neglect
of unsteadiness has a smaller effect upon the results of reference 1,
although the effects of compressibility still give significant devia-
tions at shock pressure ratios near 10. The present results and the
results of reference 2 are in agreement within less than 15 percent for
shock pressure ratios up to 10 and then diverge to a 20-percent varia-
tion at a shock pressure ratio of 20.

Figures 5 and 6 show that the cold gas contributes only a small
part of the total attenuation for pBo/p°° < 20. At pBO Pp = 20 the

relative a contribution is larger than that for pBO/p°° < 20; however,
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it is only about 4 percent, 15 percent, and 25 percent of the total for
m=1, 7, and 13, respectively.

Evaluation of Nonlinear Attenuation Expressions

The expressions derived previously are based on a linearized or
small perturbation analysis. However, for many conditions encountered
in the shock tube, the attenuation is no longer small. In order to maxi-
mize the total available experimental testing time, most experimental
work is done at values of 1 nearly equal to the total length of the
low-pressure side of the shock tube. At these large values of 1 the
shock strength often has decayed markedly from its value for small 1.
Consequently, relations for the attenuation under these conditions would
be very desirable.

An approximate method to obtain the attenuation for the cases where
the small perturbation analysis is invalid will be described. First,
consider parameters P and Q which are related to P and Q by

1
p-p-28s8
7Y R
S (43)
S _ .88
Q= Q 7R
J

(The parameters P and a of this report are identical to the param-
eters P' and Q' of ref. 1.) When equation (43) is substituted into
equation (60) of reference 1, the following equations result:

1 8P
e 1 a1ep, 18U
=282 1924+ N Lha)
5@ 7y 8. p Ot ~ a. ot (
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/1 o -
ae 5t -—T -7
. =§iUcf Ey-l)M?];lM+NPr 5w “aw (4hv)
_l-_a-g Dae T
ae Bt
1 &P
ac &5t ¢§
=lUcf (4ke)
1 8Q D da
a¢ Bt <

As discussed in reference 1, the changes in P and Q are evident
in changes by wave motion of velocity and pressure but do not indicate
the various changes in entropy. For example, if equation (4l4a) is solved
for &p/p,

%p _ 7 BefOP | 3Q (45)
P 2 al\a, ac

The value of P 1is associated with waves moving with the flow at
a velocity of u + a whereas Q is associated with waves of the opposite
family moving at a velocity u - a. Now, for the linear attenuation
theory it is assumed that reflections at the shock wave and the devia-
tlon in entropy rise across the shock wave may be ignored; that is,
st Qug = QBO or BQVS = 8Qyg = 0. Consequently, an alternate form

for the attenuation expression is

% _Zvs ~ "Bo _y “el[®B) | (BF + (BB (46)

p Pgo 2 & |\a¢/q 8¢ /reflection 8e /B

where the three terms on the right-hand side of the equation represent,
respectively, the contributions of region a, of the wave generated

in region B and reflected at the entropy discontinuity, and of the P wave
generated in region B. Consider now the last term only. The incremental
change 5P along the characteristic is then
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~ t A t
5P\ _ vV 1 8P 1 v ~
(¥>B = Lf o3 Bt = £ j; Uce@p got (47)

A change of varisble may be made (eq. (21) of ref. 1) to ¢ since

oM
U 3t = dg
oMg - MB -1

5 £(ty) -
(@) = l f M Cﬁ‘ds MB Cf% B d§
eefpg D Jg(ty) Ms-Mp-1 T

A gd Mo - M
EE = }. _ S B
<a€>s D fo vy -1 Thecr,p(e) & (18a)

) _
aeB

Substituting equation (45) into equation (48) yields:

(ol i

fgd __Ms - Mg (Bp Tgep g At (48b)
o Mg - Mg - 1\ Tg f,B

P - P ¢
Vs Bo - <?£> _2%1 \/“ a K(&) Tpee p 4t (L9)
" Ppo /p,p \P B,p 22D Jo ’

In equation (49), the left-hand side represents the pressure per-
turbation at the shock wave due to the wave generation only along the
forward running (slope of u + a) characteristic. For a complete
linearized treatment K and FB may be taken outside the integral and

equation (35b) may be employed to obtain:
§R Y 8¢ K §d va - PBQ _ 65 0)
A= 5o B cr,p 48 = K “\p &
P/B,P a 0 Ppo A P/

1

(ol iy

!
IS
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Thus, K 1is the ratio of the contribution of the waves generated
along the forward running characteristics to the totsl waves generated
in region B. The remaining portion of the attenuation contribution of B
results from Q waves reflected at the entropy discontinuity and will be

: o)
designated by (;E which is equal to

A

P/p,ats

§E) = (1 - K)(EXE_:_EEE) 51)
(P B, Q+S . Ppo /g (

The value of K 1is plotted against shock pressure ratio in fig-
ure 7. The fact that K does not depart sighificantly from 1.0 means
physically that the principal contribution to attenuation in region B

arises from the P waves. Since figures 5 and 6 have shown region B
to have a much larger effect on attenuation in general than region a,
it is obvious that the theoretical dominating factors for attenuation
are the P waves of region B. This conclusion has been discussed pre-
viously in references 1 and 2.

Since the ﬁ waves of region 8 dominate the linearized attenuation
solution, 1t is next assumed that a correction for the linearized so;utibn
may be found by operating only on the P waves in region B. Thus P waves
generated in region a and transmitted at the entropy discontinuity as well
as the § waves generated in region B and reflected at the entropy dis-
continuity will retain their original linear or small perturbation values
even though the attenuation is no longer small. It is further assumed
that region B may be subdivided into a number of smaller regions in each
of which the linear attenuation relations for P are valid. This treat-
ment is illustrated in figure 8. The arbitrary interval Al determines
the x-wise extent along the shock wave of each of the regions designated

(:), (::), . + . « Each of these regions is bounded by the shock wave

and two fluid particle paths where each fluid particle velocity is equal,
respectively, to that generated by the shock wave at the beginning of
each new interval. The inviscid flow inside each of these regions is
considered to be constant; and, consequently, there is a small discon-
tinuity in the inviscid flow across the particle-path boundaries assumed
in the model. These discontinuities can not, of course, exist in the
actual physical flow which requires a continuous variation throughout
all the regions as well as reflections from the shock wave. The errors
introduced by the assumption of constant gquantities in each region are
not considered to be large and should be of approximately the same order
as those found in the familiar steady-flow graphical characteristic
solutions of finite mesh size.
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In order to simplify the computational procedure, it is assumed
that for a given region the slope 5x/8t of the P characteristic and
of the shock wave are constant both inside and outside of that region.

Thus, in figure 8, when the  contribution of region (:) to attenua-
tion between Al and 2 Al is computed, the assumption is made that

the characteristic 6,7 and the shock path 0,1 may be extended ta inter-
sect at point 2. (Numbers refer to points in fig. 8.) The corresponding

correct regional characteristic line and shock paths are 6,7,8 and 0,1,8
which are shown in this illustration as intersecting also at the same
value of x as 2. This intersection at the same value of x 1is only
an idealization and is not the true physical picture in general. How-
ever, since the attenuation effect (generation of P waves) falls off
rapidly with distance behind the shock (similar to the fall off in local
skin friction with distance back of a sharp leading edge in steady flow),
the contribution to attenuation in the interval from Al to 2 Al due

to generation along 6,7 is much less than that due to generation along

7,8; thus, small errors in the location of 6,7 will result in very small
errors in the attenuation at 2 Al. This assumption for establishing
the intersection points of the characteristics and the shock wave down-

stream from a region (:) without knowledge of the downstream shock-wave
attenuation permits the easy computation of the influence of region <:>

for all downstream shock locsations.

When the regional approach described above is applied, the attenua-
tion for the first interval Al 1is identical to the complete linear
approach. Thereafter, however, the various second-order effects are

felt. The effect of region (:) on attenuation of the shock during the

interval from Al to 2 Al differs from its effect in the basic linear
theory because of the convergence of the particle paths since Upy < Ug.

This may be shown as follows. From equation (48),

7
3 €
6P> -lf7( OMS-MB>CA

=31 ofp 1 At (52)
(ﬂel6 D Jg, \oMg - Mg - 1) T
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The numbers refer to the points on figure 9(a). In this figure the

lines 5,1, 10,11, and 6,7,2 are drawn with slope (U + a)1; the lines 7,10

and 0,9,1,11,2 with slope Ugy; the lines 0,5,10,6 and 9,7 with slope Ug;

and the line 1,7 with slope Ujyy. Therefore, 57 = 9,7 = 0,10 = &;1¢.

) |
8¢ |1 -

6

Thus,

(ol oy

S10[ aMg - Mp
U/\ M - - 1 Cf¢§,I dg
B
t6 I

/
1 Mg - Mg f§6 fglo
-.1 ag - 5 1 d
D<°Ms - Mg - l>1( 0 BT o 0 tP8,1

(53)

Thus, the P contribution of region (:) to attenuation between 1
and 2 is (from egs. (45) and (53))

5f)> y B¢ £6 KD e a fglo
p A E - Klges g dt
<PB I,13 to Ip 2 D \Jo P7r,p 0 P7E,8

PB/1,0 to 12 \PB/1,0 to 111

The substitution of equation (40), with g, replaced by gn, into equa-
tion (54) yields
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2 o+l o+l
Sﬁ _ @ - m 22 n+3 _ Q n+5
(;) - (gn“n%(vw ) (3) D
N I, ?’l to 22
_ 2 n+l nt+l ntl
fon)o(22) TR\ - ()
(gn n/1 Voo D Zl 51
nt+l n+l

(@) |- ) (55
Po /1 a1 |\'1 i1

where <@\ is the linear sttenuation of a shock due to ’f’ effects

Po /1,01 ‘
over the initial interval Al in region @

The relationship between 177 and 1 1is derived in appendix B
and is

) 1
2 Z1 21 (56)
i1 1
Consequently, N
ntl n+l ntl
B, B e
Po/T, 1, to Ip  \Ww/I,AlL \'1 1
[ n+l n+l $
. A ey n+l \nt3 (572)
8p _ (3p i3 i TS l3 nt3
5. ) m) TR
*/I,1p to 13 ©/T,Al 1
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which for equal intervals Al becomes

.
. . o+l ntl
(ip) _ (@) N
Po/I,11 to 1p  \w/I,AL i
) ntl w1 ¢ (570)
<§g> _ (913) 5 - (o2g) ™3
Po/T,1, to 13 Po/1,n1|

J

In this form the nonlinear attenuations can easily be computed.

In this manner the influence of region <:> on attenuation at any

desired value of 1 may be computed once the attenuation at 1; has
been found. The influence of region <::> is found in a similar manner

by shifting the effective origin of the coordinate system to 1] and

A

o)
finding <TB> for the attenuated shock strength at 1,; that is,
I1

-2 n+l
®/II,1; to 1, ©/1T,A1
n+l n+l

ey n+l —
(@ _ (ﬁ) <13 - 11)”*3 ] (ZII>nTB<13 -1 l>n+5 s
poo)II}, o to 13 \Po/II,Al l2- 11 2 - 11
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or for equal intervals of Al,

~ 3
. . m+l nl
<§£> _ (% on+3 (sz)“”5
b P
©/1I,1s to i3 */IT,A1 L
_ [ .
R . . n+l n+l (8e)
I 3 N
Peo II, 13 to 1y Po /11,01
L
J

The total nonlinear attenuation at a distance 1 from the diasphragm
station which has been subdivided into several intervals Al is then
expressed as the sum of the linear contributions of region a and the
reflections from region B added to the nonlinear contributions of region B.
The following expression is obtained for the nonlinear attenuation:

o+l o+l

2 ml m+l
- = = R — ~ mrl m+l
Bp _ a DY T35 1 - k5D =3 (55 o+3 3 3 w3
E.: = (@s)a,m<z—/ 5) + = \p— . N + p-) 1+ |emd - <ZI> + |35 - (221) .+
>

ozl mlll my  ma
<L> _(__I'Al ZI) +w5_p> 1+ 2“”'3-(211)“”5 .t
Al Al \p

/11,1

I wl mHl

m+ m B
(z -Al) 5 (1 241 ZII> S0, _(5_1’) (598)
L at Al Poo/N=1/A1,A0

m+1
[
81):(913) L1 -K(§_p_> <Az_>m+3+
Pes Poo a,m \p°° I,Al !
N= ._7'_ {=1-n+BL m+l w1
S 1 o3 m+3
N=I \Pw/N,Al 1=1

where 1 1s the index.
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Second-order attenuation in the presence of transition may also be
treated by this regional system. The contributions of o and of Q
and S5 in B are still treated as entirely linear but including transi-
tion. Equation (39a) applies in its entirety to the o contribution;
and, when the first term on the right-hand side is multiplied by 1 - K,
and the second term by 1 - K, the resulting equation gives the Q
and S contribution of region B.

The transitional P contribution is treated as follows: Let 1*
be the position of the shock at which the transition in the flow behind
the shock first affects the shock. The wave diagram for transition is
shown in figure 9(b) where for illustrative purposes it is assumed that
1* = 2 Al. Now, in order to retain the facility of computation afforded
by the regional system with equal Al and a constant ¥, the value of
R* will, as a result, vary slightly from region to region. Since

?’* v Z*

tion of figure 10 which shows the parameter

U t*) Pw,std

v z*N P
plotted against shock pressure ratio. From this figure it is evident
that, if the shock pressure ratio should attenuate, for example, from 20

to 15, or from 5 to 4%, there would be about a 1l0-percent decrease in

* *
(B—) = (H 5—) the magnitude of this variation may be found by examina-
N N

R* for a given 1* and Pw,std P, The errors introduced by such a

variation in R* are not deemed to be important enough to force the
abandonment of the equal Al computing scheme. For the remainder of
this paper, R*¥ will be taken as the value of the transitional Reynolds

number in region (:). The 65 contributions for the transitional case

are expressed by the following equations which are modifications of equa-
tions (57), (58), and (59) (the subscripts m and n refer to condi-
tions before and after transition, respectively):

-2 m+l
8 (2 BwD ) T3 (a7 5
(Pw)N,m,Az (gm%)N<"oo ) D (60e)

o



36 : NACA TN L4347

-2 ntl
~ ~ 3 n+3
§L>> - (3.0, <;'v£> n+ (Al> (60b)
<°°N,n,Al ( n )N Voo D
mtl mrl m+l

IR L
(p Poo/N,m,a7| o ( )

©/N,m,(1-A1) to 1

(61a)
for
¥*
Len-1+ L
Al Al
o+l o+l n+l
A A nt3 I
8 - ?2) <Al_z - N+ 1> - (Aiz - ) (ZN)n+3
Poo/N,n,(1-A1) to 1 \’%/N,n,Al
(61v)
for
osn-1+ 8
Al Al

Numerical Evaluation of Nonlinear Theory

Several computations to determine the nonlinear correction factors
for attenuation were performed for values of the interval AI/D of 3.5
and 14. These particular values were chosen because they represent
increments of Al of 0.5 foot and 2 feet for the shock tube employed in
the experiments to be described in a later section. Typical curves
resulting from such computations are shown in figure 11l. The ratio of
the nonlinear attenuation to the linear attenuation is plotted against 1/D
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)

for an initial shock pressure ratio of 4 and a value of =2 of 0.0l X 106.

VOO
For values of 1/D > 50 the curves for é§l= 3.5 and 14 agree within
about 1 percent for the laminar case and within about 3 percent for the
turbulent case. The low value of &D/v, accentuates any variations
between the two computations; thus the case illustrated gives a discrep-
ancy near a maximum rather than near a minimum. Examination of several
such pairs of curves resulted in the conclusion that the slight ‘increase

in accuracy obtained by using Al 3.5 did not Justify the fourfold

D
increase in labor. Consequently, the computations with At _ 14  are
D

used to predict the nonlinear attenuation for 1/D g 50.

It is obvious that the finite size of Al will introduce errors
in the ratios Nlm,n/Lm,n which are largest near 1 - 0 since the non-

linear and linear attenuations are identical for the first interval.
(See fig. 11.) However, the errors introduced in the attenuations Nlm,n

themselves are small since Lm,n -0 as 1 0. To represent the physi-

cal flow in this region accurately would require that Al approach O.
Interpolation formulas giving acceptable accuracy near 1 — 0 are assumed
to have the form '

\

Nonlinear attenuation _ (Constant) 1 0.5
Linear attenuation

> (62)

Nonlinear attenuation _ (Constant) 1 0.8
Linear attenuation D

/
for (O < % < 56) for laminar and turbulent flows, respectively, since

. 0.8
the linear attenuation is proportional to (?./D)o ° and (1/D) for
the laminar and turbulent flows. v

The constants are chosen to match the computed curves for %% = 1k

at % = 56. From figure 11 it is evident that the errors resulting from

the application of this interpolation formula are less than the afore-

mentioned errors at % = 50 and are thus acceptable.
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In order to obtain curves of the transitional nonlinear to linear
attenuation ratio NL7,T/L7’T for a constant value of R¥ and several

shock pressure ratios, a cross-plotting technique was used. At a given
shock pressure ratio the values of NL7,T/L7,T were computed for several

values of the ratio 1¥/D to Al/D. Since each 1*¥ represented an R¥,
the resulting ratios for each 1/D could be plotted against R¥ for a
given shock pressure ratio. The values for a particular R* could then
be regd from these plots to produce a master plot with a common value

of R".

Plots of the ratio of nonlinear attenuation to linear attenuation
are shown in figures 12 to 15. In these curves region a is always con-
sidered as having turbulent flow whereas four cases are considered for
region B: namely, (a) laminar flow, (b) turbulent flow, (c) transition
with R* = 1.25 x 106, and (d) transition with R* = 2.5 x 106. The
cross-plotting parsmeters are shock-tube Reynolds number amD/vo° and
length of shock-wave travel expressed in hydraulic diameters Z/D. At
the lower pressure ratios PBo/Pm: curves for more values of awD/ve are
shown than at the higher pressure ratios. This limitation resulted from
the considerations of the restriction of the validity of the theory to
an ideal gas, the region of experimental data of this report, the most
likely general region of experiments for other facilities, and priority
for computing effort. Since figures 12 to 15 are the result of cross
plotting, the accuracy is assumed to be about 2 percent.

An snalytic closed-form investigation has been made of the fact
that the limit of NL7’1/Iq,l approaches O when Pgo/Pu approaches 1

whereas the limit of NLq,7/L7,7 approaches 1.0 when PBo/Pw

approaches 1.0. This second-order analytic solution for weask shocks
indicates that a value of n =3 in B 1is a critical value; all solu-
tions with n > 3 approach a limit of 1 and those with n < 3 approach
a limit of O. Of course, in all cases the absolute value of both the
linear and nonlinear attenuation must approach zero as Pgo/Pe

approaches 1. Since o has only a secondary effect on attenuation and
since the expansion fan has been replaced by a "negative shock,” the
refinement of transition in region o was not deemed necessary.

RESULTS AND DISCUSSION

Experimental Apparatus and Procedure

Extensive shock-attenuation data were obtained in a high-pressure

shock tube 2 inches high by l% inches wide in the Langley gas dynamics
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laboratory. This shock tube is the same as that described in reference 1
with added velocity-measuring equipment. Light screens placed at eight
stations in the low-pressure section made possible measurements of the
complete distance-time history of the motion of the shock wave for a wide
range of shock pressure ratios and flow Reynolds numbers. Figure 16 shows
schematically the arrangement of the shock tube and associated equipment,
and the low-pressure section with associated optical systems is illustrated
in figure 17.

Air at room temperature was used in both high- and low-pressure sec-
tions. The normal arrangement for high-pressure section air supply and
low-pressure section vacuum systems is shown in figure 16. In & limited
number of low-density runs, evacuating the high-pressure section was nec-
essary; for these cases, an auxiliary vacuum system, identical with the
normal low-pressure system, was substituted for the pressure system shown.
Conversely, certain high-density runs required pressurization of the low-
pressure section; in this case a simple pressure system replaced the nor-
mal vacuum system. The pressures in both high- and low-pressure sections
were adjusted for each run. All data were obtained from tests where the
diaphragm was punctured by a hand-operated plunger. In this way diaphragm
pressure ratio and consequently, theoretical shock-pressure ratio PBo/Pm

were closely controlled. Bourdon-tube gages were employed for pressure
measurements, and the vacuum systems utilized a modified barometer for
pressures in the range from 4 inches mercury absolute to atmospheric
pressure, and a O to 100 millimeters mercury absolute pressure gage was
used for the low pressures.

Static pressures were structurslly limited to 1,000 pounds per square
inch gage in the high-pressure sections and 250 pounds per square inch
gage in the low-pressure sections. A vacuum limitation of about 0.0l atmos-
phere absolute pressure resulted for the low-pressure section because the
light screen systems became unresponsive for the low pressures. In the
high-pressure section, low pressures were limited by fallure of diaphragms
to burst properly.

Diaphragms made of thin metal foil were used for the low-pressure runs.
The most useful materials were soft aluminum foil, 0.001 inch thick, and
soft brass foil with a nominal thickness of either 0.00125 or 0.0015 inch.
With these materials, it was possible to obtain good bursts for pressure
differences across the diaphragm ranging from 10 pounds per square inch to
100 pounds per square inch. Good bursts for the range of pressure differ-
ence from 100 to 1,000 pounds per square inch were obtained by using spring-
tempered brass shim stock with thicknesses ranging from 0.008 to 0.021 inch
and scribed to various depths in an x-shaped pattern along the diagonals of
a rectangle representing the shock-tube cross section. When punctured
under pressure, the diaphragm split along the scribe marks, and the four
triangular pieces of material folded back against the wall and presented




Lo - NACA TN 4347

minimum resistance to the flow. All other conditions being equal, runs
where this type of burst took place resulted in minimum shock attenua-
tion compared with attenuations resulting from bursts where metal or
acetate~type diaphragms were shattered. Material thicknesses and scribe
depths were determined so that puncturing pressure was just below the
pressure at which the diaphragm would have failed. The unscribed foil
diaphragms used for small pressure differences split along the diagonals
in this same way when punctured at the center, and optimum results were
also generally obtained with these diaphragms.

Shock velocity measurements were made with miniature schlieren systems
located at eight positions in the low-pressure section. Figure 16 shows
schematically the position of these systems. The optical and electronic
systems were essentially the same as those used in reference 1, in which
the signal generated in & photomultiplier tube by deflection of a beam of
light upon the tube was amplified and used to trigger a thyratron. The
thyratron output pulse, in turn, started or stopped a counter chronograph.
Figure 18 illustrates one complete optical system, including the chassis
containing the photomultiplier-amplifier-thyratron circuit, which is shown
in figure 19. Wooden shields were employed to keep stray room light from
falling upon the photomultiplier tube.

For the multiple systems employed herein, each thyratron output pulse
was channeled to two chronographs. These chronographs indicated shock
traversal time between any two adjacent stations, and any one of three
types of chronographs, 8 megacycles, 1.6 megacycles, and 1 megacycle,
was employed for each position. The overall time interval between the
first and last stations was measured with a 100-kilocycle chronograph
for a check upon the sum of the individual measurements.

Reduction of Experimental Data
The experimental shock-wave pressure ratio was computed from the

measured time interval At for the shock to pass between two measuring
stations a distance Al apart from the relation

Pvs _ 2y ﬂﬁlﬁﬁt 2 _y =1 (63)
Py Y + l\ 8o 7y + 1

This value was assumed to represent the shock strength at a position
midway between the two stations, and the meximum error was estimated to
be less than 1 percent. ' The theoretical shock pressure ratio PBo/pw

was computed from the diaphragm pressure ratio just prior to burst. For
an ideal gas the maximum error in Ppo Was estimated at O0.1lp, (for a
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shock pressure ratio of 10 at pm‘=_0.005pw,std>; and the maximum devia-
tion in the ratio of computed (pﬁ/pm)o to true (pB/pw>o was estimated
to be approximately 1 percent.

Comparison of Theory and Experiment

The general method of comparison between theory and experimént will
be to compare the measured and predicted attenuastion for particular values
of pBo/Pm and amD/v°° on individual curves. However, it is of interest

to first consider a few typical curves where the data for a constant value
of PBo/pm but with varying values of aw’l)/v°° are shown on a single plot.

Such plots are shown in figure 20 for values, of pBO/p°° of 4.0 and 10.0.

The experimental data are avereges of several runs on a given day and the
number of runs for each data point is indicated on the figure. On some
runs in which the density change across the shock wave was small, all

the velocity-measuring stations did not register because of variations

in their sensitivity; and, as a result, there are gaps in the experimental

©o

data. (For example, see fig. 20(b) at %29 = 0.005.

One fact immediately evident is the nonrepeatability of some of the
data, even when compared on a daily average basis. An allowance for an
error in pB/p°° of %1 percent in the experimental and data-reduction

technique will bracket most of the observed discrepancy in the averages;
but certain runs at very low values of a‘,‘,;D/vo° still fall outside this

range.

If an attempt were made to extropolate a curve from the data points
to 1 =0, an inflection would often be required in the curve between
1=0 and 1 =6 to make it pass through the theoretical value of
PBo/pw at 1 = 0. In order to illustrate this point, connecting lines
have been drawn in figure 20 for some of the values of awD/vw. Similar
behavior is found in the experimental data reported in figures 11 to 14
of reference 8. Now all the attenuation theories based on wall effects
dgpvs[ Poo

a12
or turbulent flow. At the transition point the theory of the present

which are known to the authors predict > 0 1in regions of laminar

4 dpy¢/P
paper usually predicts _EXEZEE > VS “) < 0. Con-
l laminar di transition

sequently, if this inflection is to arise from wall effects, it must be
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caused by transition. The interferometric studies of reference 16 have
found values of R* of about 1.4 x 100 and 2.0 x 106 for PBo/pw =2
and- 24, respectively. Since values of R¥ of the order of 0.5 x 100
are required to cause an inflection at 1 = 6 for pBo/pw = 4 and 10,
it does not appear likely that transition is the cause of this inflec-
tion. This inflection will be discussed more fully later in this paper.

The unexpected inversion of Reynolds number effects for the lower
values of 1 should be noted. For example, at 1 = 5.2 and pBo P, = 10

the attenuation for EEB = 0.005 X lO6 is gbout one-fourth that for
voo

8, 1Y
—EB = 0.1 X 106. For the same value of 1 and 529 = 4.0, the attenua-
[}

tion for 2 - 0.1 x 106 1is sbout one half that for ;ﬁ =1 x 106.
[o0] [e o]

The. spread with Reynolds number of the experimental data at the
larger values of 1 1is also much smaller than would be expected on the
basis of the linear theories (refs. 1 and 2) which predict attenuations

1

1
2 5
at a given l/D proportional to (%ER) and (%EE) ‘for laminar
[+] 0
and turbulent flow, respectively. This behavior has been noted by other
investigators (ref. 10).

Theoretical variation of va/pm with 1 for values of

&P _ 5.0 x 106, 0.1 x 106, and 1 x 10® for p. fp_ = 4.0 and 10.0 are
Bo/¥ew -

Vm .

presented in figures 21 and 22. These values are based on the theory

of the present paper. Laminar and turbulent linear and nonlinear
pressure-distance predictions are shown in figure 21(a) for Pﬁo/Pw = 4.0,

and in figure 21(b) for Ppo/Pe = 10.0. The effect at larger values of 1

of the nonlinear correction is twofold; not only is there a marked reduc-
_ tion in the predicted attenuation when the attenuation is large but
there is also a marked decrease in the predicted Reynolds number effect
on attenuation. The following table based on figures 21 and 22 for

1 = 22 feet illustrates these facts:




NACA TN 43h47 ' 43

P . b
Values of ﬁ) - <ﬁ> for B2 -y Values of |o£9) _ (Pvs! for BB .10
Pa P 1=22 P P Pe 1=22 @
Curve Figure *
© & for values of :L’D- of - for values of ;ﬁ of - K
o @

0.01 x 106 0.1 x 106 1 x 106 0.01 x 106 0.1 x 106 1 x 106

L7,1 21 1.45 0.48 0.17 2.62 0.66 0.10
L7,7 21 2.3%0 1.4s5 .91 6.10 3.85 2.43
NL7,1 21 1.09 Sk .16 1.87 .58 .10
NLp,7 : 21 1.39 1.04 STh 3.22 2.50 1.83

o 8 o 8

N7, 22 1.09 .99 T3 2.65 2.46 1.8 1.25 x 106

Nq,T 22 1.09 .92 .72 1.87 2.38 1.8 2.5 x 106

The nonlinear attenuation predictions for values of R* = 1.25 X lO6
and 2.5 X 10 are shown in figures 22(a) and 22(b). Since, for these

values of R¥, 1¥* = 0.122 and 0.244 foot for %QE - 106 at =2Bo . 10,

L (<]
the nonlinear curve for turbulent flow is nearly identical to that for
transition and the turbulent curve 1is used in the figure. These curves
and the table indicate that transition at a constant value of R¥ appears
to decrease further the spread of attenuation with &wD/vm. The discon-

Dyg /P
tinuous change in 4 —23443 at 1* 1s obvious. Another point of

interest is the predicted variation of NLy,r at 1 =22, pBo/pw = 10,

and R¥ = 2.5 x 106; the attenuation is less for a,D/v, of 0.01 X 106
and 1 x 106 than it is for amD/vm of 0.1 X 106. The completely laminar

flow of B _ 0.01 X 106 and the nearly completely turbulent flow of

o0
%29 =1 X lO6 result in almost ldentical attenuations. The flow of
0
EEE = 0.1 x 100 is mainly turbulent (1* = 2.44) and, as expected, the
o]
attenuation is greater than for EEE =1 X 106. Thus, in this case,
00

transition has resulted in an inversion of attenuation with Reymnolds
number under a certain set of conditions. However, for R*¥ = 1.25 x 106,

—— =10, and 1 = 22 feet, the pattern of increasing sttenuation with
Po

decreasing a,D/Vv, 1is once again evident.
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In figures 23 to 36 the variation of the average experimental shock
pressure ratio with distance is compared with the various attenuation pre-
dictions of the theory presented earlier in this paper. The nominal
values of pBO/p°° range from 1.5 to 10 and a,,‘,D/vo° covers the range

of 0.005 X 106 to 15 x 106, The hydraulic diameter of the shock tube
is 1/7 foot and the maximum value of 1 at which pvs/p°° could be

determined was 1752 feet; thus a maximum experimental value of

2 ~ 12
I 5

Il

resulted.

The marked improvement obtained from use of the nonlinear theory
when the predicted attenuation i1s large becomes evident upon inspection
of figures 23 to 36. The unusual behavior near ! — 0O which was men-
tioned earlier can now be examined more closely. For the higher values

of shock pressure ratio (8, 9, and 10) and low values of %59 < 0.01 X 106,
o
the measured attenuations at the first station are much smaller than any
of the theoretical predictions of this report or of reference 2. In fact,
Po _ Bad _ 6
for = =9.,0 and v 0.005 X 109, one set of averages gives a nega-

00 00

Dy

tive attenuation <~—§ >'EEE§ of such size that even the estimated

w  Po
A

P P
V8 « 2B 4t the first

Poo Pw

l-percent-error margin is not sufficient to make

station % = 36.6). In reference 9 it was also found that for high values

of pBo/pw the maximum shock velocities were greater than the velocity

theoretically computed for an inviscid fluid both with and without con-
sideration of variable specific heat and gaseous imperfections. Hydrogen
and helium were used as the driver gas and air as the low-pressure fluid.
The maximum shock velocity occurred at about 40 to 50 diameters from the
diaphragnm.

On the other hand, references 4 and 8 did not find any values of

Exﬁ > Eﬁg for values of pBO/p°° in the same range as the present
o0 [+

experiments. These works proposed a "formation decrement" defined as
"the difference between the Rankine-Hugoniot shock strength and the
meximum shock strength obtained after the formation distance." (See

ref. 8, page 17.) This decrement was then attributed to the imperfect
diaphragm burst producing a series of compression waves which eventually
coalesce to form a shock weaker than that for the case of a theoretically
perfect burst.
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For the lowest shock pressure ratios at the highest shock tube
Reynolds numbers, the opposite trend (measured attenuation larger than
theory) is apparent. An extreme example of this is the attenuation meas-

a Y
ured at the first station for 2 - 15 x 106 ang —BC - 2. (See fig. 25.)
D

0 00

Three of the four runs used in obtaining this average value showed this
behavior, which is attributed to the formation process.

The processes giving rise to the behavior for Z/D -0 are not
understood. The experimental data of this report generally show a trend
of decreasing pvs/PBo with increasing awD/v°° at the first station.

If this effect were to be explained on a viscous basis, it would appear
that an opposite trend would appear; hence, the diaphragm burst is prob-
ably the governing factor. The bursting phenomena are in turn governed
by the diaphragm materials (weights and rupture characteristics) as well
as the pressure load. The diaphragm opening time (time for the diaphragm
sectors to fold against the wall) was estimated by a method which has
previously been checked experimentally. No correlation was found between
the opening time and the behavior near 1 —» 0. It was noticed, however,
that, in the experimental runs which exhibited the most marked inflections,
foil diaphragms were used. On the other hand, some runs exhibiting very
little or no inflection also used foil diaphragms. Therefore, it does

not appear that foil diaphragms are solely responsible for the inflected
data points.

Regardless of whether the maximum experimental value of va/Pn is

greater than or less than the ideal value, the behavior near the diaphragm
station is not governed by wall effects but by the diaphragm burst and
the resultant three-dimensional flow first established. This highly rota-
tional viscous flow does eventually become essentially two-dimensional,
with the exception of mixing and vorticity at the interface between the
driver and driver gases. Consequently, any attenuation theory based on
wall effects cannot predict the initial behavior near the diaphragm sta-
tion. As the distance from the diaphragm station increases, the ratio

of the influence of the initial bursting flow to the influence of the
integrated wall effects decreases; therefore, the physical variation of
pvs/pOo should approach the theoretically predicted attenuated value

asymptotically as 1/D increases.

The experimental data of figures 23 to 36 approach the nonlinear
theory (considering transition) in a manner very similar to that just
described. For high values of pBo/Pw and low values of amD/vm where

the effect of the formation process results in a significant inflection,
the deviation from the nonlinear curve persists to the larger values of
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p
1/D. For 599 =10, 9, and 8 with 392 = 0.005 x 100, the formation

o] [+ o}
effect was so large that the experimental data never approached closely

the nonlinear curve for % < 125. As am;D/v°° increased and the forma-

tion effect decreased, agreement between experiment and nonlinear theory
improved both in convergence of the experimental and theoretical values
at a lower value of 1/D and in meximum deviation at the highest .values
of 1/D.

The nonlinear curve for R¥ = 2.5 X lO6 appears to agree more
favorably with the data over most of the range of PBo/Pm' At the lower

values of pBo/pw there appears to be a tendency for the data to depart

from the R¥ = 2.5 X lO6 curve and approach the R* = 1.25 X lO6 curve.
The interferometric measurements of reference 16 indicate such a trend
of increasing R* with increasing PBO/Pm' This trend might also be

expected from comparison with steady-flow experiments since the wall
cooling increases as pBO/p°° increases.

The comparisons of figures 23 to 36 between the nonlinear transitional
theory and the experimental data show that this theory is valid for the
prediction of experimental attenuation except for the lower shock tube
Reynolds numbers at the higher pressure ratios. These latter conditions
are those under which it appears that the shock-formation processes dom-
inate the entire flow.

As stated previously, errors of unknown magnitude were introduced
by the averaging of wall effects across the flow. The fact that the
present theory was able to predict fairly well the measured attenuations
over the entire range of shock pressure ratios and Reynolds numbers
(except near the diaphragm) indicates that the errors introduced in the
averaging process are either not serious or else self-compensating.

The range of boundary-layer thicknesses in region B (which has the
predominant influence on attenuation) was determined by methods similar
to those of references 1k and 15 for laminar and turbulent flows, respec-
tively. In the experiments reported herein, with the shock 20 feet from
the diaphragm, the maximum boundary-laeyer thickness varied approximately
from 0.006 to 0.25 inch for laminar flow and from 0.07 to 1 inch for tur-
bulent flow. When compared with the 0.75-inch half-width of the shock
tube, the turbulent thickness was significant for much of the experimental
data. On the other hand, laminar boundary-layer thickness was generally
small. Thus the averaging process as used for this theory appears to
apply equally well to thick as well as to thin boundary lsyers.
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Magnitude of Other Neglected Second-Order Effects

Since the treatment presented has considered only one source of
nonlinearity, it is advisable to examine briefly the influence of other
neglected sources. The three most obvious factors neglected are the
finite extent of the expansion fan, the nonlinear effect of the wave
interactions at the entropy discontinuity, and the reflections at the
shock wave.

The effect upon attenuation of treating the expansion wave as one
of finite width with varying free-stream properties was calculated by
using the results of reference 14 for pressure ratios PBO/Pw of 1.6,

2.9, and 4.5 (¢4 of -0.6, O, and 0.5, respectively, in the notation of

ref. 14). Computations were not made for higher shock pressure ratios
because the solutions in reference 14 did not extend above €te = 0.6.

The laminar-flow wall-shear and heat-transfer distributions through the
cold-gas regions given by this reference were used to compute the skin-
friction coefficient which was, in turn, utilized to compute the
attenuation.

Wheh the method of the present paper was used, it was found that,
for the three cases computed, the net change in attenuation through
approximation of the finité expansion by the negative shock was practi-
cally zero for pBO/Pm equal to 1.6, -0.3 percent for PBo/Pm equal

to 2.9, and -0.6 percent for PBO/Pw equal to 4.5. Although the con-

tribution of the cold gas was itself influenced by the finite expansion
(up to a 50-percent decrease at the highest pressure ratio), the cold
gas contributes so little to laminar-flow attenuation at these low pres-
sure ratios that the error in assuming a negative shock 1s negligible.

For higher shock pressure ratios the effect of the finite expansion
cannot be computed. However, examination of figure 5 indicates that, at
& shock pressure ratio approximately equal to 6, the contribution of the
cold gas (with the negative shock) vanishes. At higher pressure ratios
the cold gas tends to decrease attenuation but this effect remains small
compared with the contribution of the hot gas. At a shock pressure ratio
of 20, for example, the effect of the cold-gas region has reached only
4 percent of the total. Thus, the finite expansion fan can influence
only a small part of the total attenuation, and the assumption of a nega-
tive shock should give reasonably accurate results.

The lamlnar boundary-layer finite-expansion-fan solutions of ref-
erence 14 were also used to estimate the effect of the negative shock
assumption upon the attenuation predicted by reference 2 for the same
three pressure ratios. The errors in attenuation which arise through
the use of a negative shock are 1.4 percent at Ppo/P, equal to 1.6,
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5.1 percent at PBo/Pw of 2.9, and 4.2 percent at Ppo /P OF 4.5. 1In

this case, the contribution of the cold gas tends to decrease the attenua-
tion at all pressure ratios of interest, the contribution for the negative
shock assumption reaching a maximum at PBo/Pm equal to 4.5.

No means of computing turbulent boundary-layer flow inside a finite
expansion are available. However, according to the linearized negative
shock approach of this paper, the cold-gas contribution is always less
than 16 percent for pressure ratios up to 20 and always less than 10 per-
cent for pressure ratios up to 10. (See fig. 5.) If the effect of the
finite expansion in turbulent flow is in the same direction as in laminar
flow, the cold-gas contribution, when a finite expansion fan 1s considered,
would be less than that for a negative shock. Thus it is assumed that the
effects of the difference between the finite-expansion and negative-shock
solutions for turbulent flow may be neglected, at least up to shock pres-
sure ratios of 10.

The influence of nonlinearities in the reflection and transmission
of waves at the entropy discontinuity was calculated for shock pressure
ratios pBo/p°° equal to 1.25, 2.0, 4.0, 6.0, 8.0, and 10.0. The non-

linearities involved required that the shock-tube Reynolds number and
station be specified in order to calculate the attenuation for this case.
The case of a8, D/v, equal to 0.1 X 106 was chosen, and the attenuations

at 1/D equal to 7O and 140 were calculated for completely laminar {(n = 1)
flow and completely turbulent (n = 7) flow.

For the laminar case, a difference of about one-half percent was
found between linear and nonlinear calculations for the wave interactions
at the entropy discontinuity for PBo/Pw of 10 and at Z/D equal to 140,

the nonlinear calculation predicting greater attenuation. Differences at
Z/D of 70 and et lower pressure ratios were smaller and generally in the
same direction, except at a value of pﬁo/p°° of 1.25 where the nonlinear

entropy result gave slightly less attenuation than the linear result.
The deviations, which were small in all cases, were also somewhat erratic
in their behavior.

Differences in the turbulent case were somewhat larger and ranged
up to 10 percent for a value of 1/D of 140 and a value of pBO/pw of 10.

This condition is attributed to the larger relative contribution of the
cold-gas region a to the total attenuation for turbulent flow. (See
table I and fig. 5.) Again, the nonlinear entropy calculation predicted
greater attenuation than the linearized except at a value of PBo/Pm

of 1.25 where the trend was reversed. However, at the low pressure ratios
the deviation was less than 1 percent and this trend is not considered to
be significant.
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The effect of reflection of waves at the shock was estimated by the
following treatment: The unattenuated shock was assumed to be overtaken
by a single isentropic wave of strength equal to the total attenuation
for a given condition and station. The resulting one-dimensional inter-
action was computed and the strength of the shock after interaction com-
pared with the strength predicted by the linearized theory. These results
were computed for shock pressure ratios of 10 and 4.

For PBo/pw equal to 10, the three cases were compared and the
results are given in the following table:

EEE 3 Attenuation Percent difference
Yoo D No reflection | With reflection in attenuation
0.1 x 108/ 140| L) | = -0.60 | I ; = -0.55 8
1 140 | Ly 7 = -3.57 I7,7 = -3.16 11
.005 154 L7’7 = ~T.0 L7’7 = -6.14 12
a

The conditions of —"- = 0.005 x 106 and %
VQ

tions under which maximum attenuation would be expected for the experi-
mental range of this paper.

= 154 represent the condi-

In all cases, the shock is slightly strengthened by the interaction,
that is, attenuation is decreased. This is a trend which is opposite to
that generally computed for the exact entropy discontinuity. For pBo/pm

equal to 4, only one case was computed, that corfegponding to the largest
predicted attenuation, amD/vw equal to 0.02 x 106, 1/D equal to 15L.

In this case, the predicted attenuation was Pvs ~ PBo equal to -2. The
P

consideration of reflection gave Pvs * Pgo equal to -1.8. The differ-
o]

ence in attenuation was 10 percent, again in the direction of decreasing
attenuation.

In general, then, the effects of the entropy discontinuity and the
reflected wave at the shock which were neglected in the linearized theory
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tend to oppose one another and are of about the same order of magnitude
for the worst cases (turbulent flow, strong shocks).

For the pressure range of this report it has been shown in the pre-
ceding discussion that the two nonlinear effects having the largest magni-
tude are of opposite sign. The effect of neglecting the finite expansion-
fan width is small for laminar flow and is also presumed to be small for
turbulent flow. Consequently, the neglect of these three effects, which
have a net influence much smaller than the nonlinear P effect considered,
appears to be justified for attenuation. Although the aforementioned
effects are negligible for attenuation, they can appreciably influence
the pressure, density, and velocity distribution at points removed from
the shock. This behavior arises from the fact that the relative influence
of the P waves of region B decreases as the distance behind the shock
increases; the influence reduces to zero at and behind the entropy dis-
continuity. (See pages 33 and 34 and fig. 13 of ref. 1 for further
discussion.)

CONCLUDING REMARKS

The theory of NACA Technical Note 3375, in which shock-wave attenua-
tion is calculated by use of a linearized form of the hyperbolic system
of equations of motion and energy and through the assumption of equivalent
incompressible steady-flow friction and heat-transfer coefficients, has
been modified in the following manner:

(1) Incompressible unsteady skin-friction coefficients have been
determined by an integral method. The resulting unsteady incompressible
skin-friction coefficient is corrected for compressibility by a refer-
ence temperature method.

(2) A nonlinear regional approach has been employed to permit the
extensions of the theory to large attenuations. This approach modifies
only the forward running waves generated in the hot-gas region; these
waves are shown to dominate the attenuation process.

(3) Transition effects are considered. The method assumes instan-
taneous transition from laminar to turbulent flow. The Reynolds number
of transition then becomes a parameter of the attenuation problem.

The modified theory has been evaluated for a range of shock pres-
sure ratios of general experimental interest. Curves are presented to
permit easy predictlon of attenuation for shock pressure ratios to 20
and a range of shock-tube Reynolds numbers. Results for the linearized
theory with all laminar and all turbulent flow are compared with results
of NACA Technical Note 3278, and the predicted attenuations are found to
be in fair agreement.
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Experimental local shock pressure ratios have been determined for
ideal shock pressure ratios from 1.5 to 10 for a range of shock-tube
Reynolds numbérs and position from the diaphragm station.

Comparison of the modified nonlinear theory using a transition
Reynolds number based on flow length of 2.5 X 106 with the experimental
results shows good agreement except for the following situations:

(1) The highest shock pressure ratios at the lowest shock-tube
Reynolds numbers where the effects of the nonperfect diaphragm burst
are believed to dominate the flow.

(2) The lowest shock gressure ratios, for which a lower transition
Reynolds number (1.25 x 106) appears to give better agreement.

The effects of considering a finite expansion fan, the exact inter-
action at the entropy discontinuity, and reflection at the shock wave
(all of which are neglected in the present treatment) are calculated for
certain cases. The net effect of these three contributions is shown to
be small compared with the nonlinearities accounted for in the stepwise
regional calculation. ’

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 25, 1958.
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APPENDIX A
SUMMARY OF LINEARIZED ATTENUATION EQUATIONS

The changes in the characteristic parameters P, Q, and S/R as
a function of local skin friction are derived in reference 1 and those
appropriate to shock-wave attenuation are summarized in this appendix.
Subscripts refer to positions on the wave diagram of figure 1.

- P. - €d
Pe- P _Po-Puw_g Matn 1 f cr of8) dt (A1)
ae 8¢ Mg +tn+1lD 0 ’
P_VS__:_P_f=¢ M - Mp }_foc (&) at (A2)
ae PP aig -mMg - 1D J,, TP
d
-Q -qQ M. - M €q
o Mo g T TRl [ e 3)
ae a¢ B oaig - Mg+ 1 D Jo B
Py - Pg (Pc—Pb)+(Qf-Qg) -1 %8ofBao 4 tq
e . + = aﬁo/z ¢S,B%fo eg,(8) ag-¢s,a%fo or o(t) &(e) (A%)
=) -
where
¢ _2 [(7-1)1\4@-1Ma+M°"+n+lMa2+(T"'-Ta"’)°‘N —%l+—u— (45)
Pra " Mg + 1 Tq, br (Mg + W)(7 - 1)

#e,p - 2 .
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(% B> 2 = {[(7 1Mg § l]MB + FTR— Mg2 + o Npyp Ol + G Dian - W) (a6)
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APPENDIX B

DERIVATION OF EQUATION FOR Zy

The derivation for 27 will be obtained and then generalized to

arbitrary N. The wave diagram of figure 9(a) shows the location of the
nurbered points. The symbol xg denotes the distance of the point 6

from the origin, and so forth. The following equations are obtained by
simple geometry from figure 9(a):

xp = Ugrt2 (B1)
xp = Ustty + Urp(tq - t1) + (U + a)g(ta - t7) (B2)

Combining equations (Bl) and (B2) yields

t U - U t U - U
hal 1 + s II 2 sI II (BB)
t1 Urp - (U + a)gfty U - (U+ a)1
Also from figure 9(a),
x11 = Usttil (BL)

xpq = Ugpty + Upp(ty - t1) - Ugp(ty - ta0) + (U + a)p(t11 - t10)  (BS)

Xqy = UIth + (U + a)I(tll - tlo) (B6)

Combining equation (B4) with equation (B6) and combining equation (B5)
with equation (B6) yields

1 at

- B
tyo (U+a)p - Ust &)




NACA TN L3kt 55

and

t U -U t
10 _ “sI II/_'Z -1 (B8)
t3  Usz -Ur \fl

Now

111 tir tan %o

= = (B9)
L, 't tiotn
Substitution of equations (B3), (B7), and (B8) into equation (B9) pro-
duces
11 _ Yst - Urg 81 [t2 (B10)
1 Ugy -Up (U+a)p - Upr\ty
or
1 1
AL 72 o (B11)
1 &1
Since the origin in figure 9 could be shifted to any arbitrary
location and the same geometrical relations above could be derived in
the new location the generalized formula for Zy can be written from
inspection of equations (B10) and (Bll) as
Uy = U a

Usy - Un (U + a)N - Un+1
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Figure U.- Compressibility corrections as a function of shock pressure
ratio for shock-tube flow. .y = l.k; w = 0.8.
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Figure 8.- General wave diagram for nonlinear analysis in region B.
The short-dashed lin€e is an extrapolation of the shock-wave path
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Figure 31.- Comparison of averaged experimental local shock pressure
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ratios with various theoretical predictions. _Bo _ 5.0. Flagged
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